

RT1985/RT1986/RT1987 Idea Diode Protection Switch: Design Considerations and Applications

Shihchun Liu | AN089 June 2025

In modern electronic systems, efficient power management is crucial to ensuring reliable operation and extending battery life. Protection switches have become essential components in simplifying power control and protection for various loads. Compared to discrete MOSFET solutions, integrated protection switches offer benefits such as smaller size, enhanced protection features, and simplified design processes.

The <u>RT1985/RT1986/RT1987</u> family is the high-performance Ideal Diode Protection Switch, specifically designed to enhance the power management of modern electronic systems such as USB-C/Thunderbolt power delivery, docking stations, and Power ORing configurations. This application note provides a detailed overview of the product's features, applications, and key design considerations.

RICHTEK

Table of Contents

1	Key F	Features of Protection Switches	3
	1.1	Power Control (On/Off Switching)	
	1.2	Programmable Soft-Start and Inrush Current Control	4
	1.3	Start-Up Short-Circuit Protection (SCP)	6
	1.4	Reverse Current Blocking	7
	1.5	Overvoltage Protection (OVP)	8
	1.6	Over-Temperature Protection	9
	1.7	Low On-Resistance (20mΩ)	9
	1.8	Ultra-Low Quiescent Current	9
2	Appli	ication Examples	10
	2.1	USB-C/Thunderbolt Power Delivery	10
	2.2	Docking Stations	10
	2.3	Power ORing Applications	10
3	Conc	lusion	

1 Key Features of Protection Switches

Featuring low forward voltage, programmable soft-start, start-up short-circuit protection, and robust fault protection mechanisms, the <u>RT1985/RT1986/RT1987</u> family simplifies power path management while increasing system reliability. Compared to discrete MOSFET implementations, this family offers a smaller footprint, easier design integration, and superior protection features.

Product Operation Vin		Maximum Continuous	OVP Threshold	Package	
		Current			
<u>RT1985</u>	3.4V to 23V	8A	Fixed	VDFN-12TL 3x3	
<u>RT1986</u>	3.4V to 23V	5.5A	Fixed	VDFN-12TL 3x3	
RT1987	3.4V to 32V	8A	Programmable	VDFN-12T1L 3x3	

Figure 1. Protection Switch Features

1.1 Power Control (On/Off Switching)

Protection switches provide a straightforward method to control the connection and disconnection of power to specific loads without mechanical relays. This allows for better power sequencing and dynamic power management. The <u>RT1985</u>, <u>RT1986</u>, or <u>RT1987</u> provides precise power path control through an active-high EN pin. When EN is asserted high and the input voltage exceeds the UVLO threshold, the power path is enabled with a defined delay and controlled ramp-up behavior.

Figure 2. Enable Control of the Protection Switch

1.2 Programmable Soft-Start and Inrush Current Control

Many protection switches incorporate built-in soft-start features by controlling the gate drive voltage, allowing a gradual increase in output voltage and current. The <u>RT1985</u>, <u>RT1986</u>, or <u>RT1987</u> includes an adjustable soft-start feature. By adjusting an external soft-start capacitor, designers can set the VOUT slew rate and limit the inrush current. This prevents voltage glitches on the main bus, protecting sensitive devices that share the same supply. This feature is critical for systems with large capacitance. Refer to the datasheet for detailed soft-start capacitor design guidelines.

Figure 3. Startup without the Inrush Current Control

Figure 4. Startup with the Inrush Current Control

RICHTEK

File Edit Utility Help							Tek	tronix
Waveform View	E						Add N	ew
tin a statistica de la composición de la			Δt: 1.836 ms 1/Δt: 544.7 Δv: 16.177 V Δv/Δt: 8.81	G 1 Hz kV/s		30 V	Cursors Measure	Callout
		t: 8.512 ms v: 2.012 V		t: 10.348 ms v: 18.188 V		25 V	Results Table	Plot
		- Propriodition and the state of the state o	· · · · · · · · · · · · · · · · · · ·		- 			More
VIN: 5V/div				*		201		
						15 V		
						10 V		
				Both the	output vo	Itage ar	nd th	e
⊡VOUT: 5V/div				/ Inrush cu	urrent are c	controll	ea.	
EN: 5V/div						-5 V		
C1)					a Andre and Andreas and Andreas and Andreas and Andreas and Andreas and Andreas and Andreas and Andreas and Andreas and Andreas and A	-10 V		
IOUT: 1A/div	2 ms 4 ms	6 ms	8 ms 10 ms	12 ms	14 ms	-15 V 16 ms		
Ch 1 Ch 2 Ch 3 Ch 4 1 A/div 5 Wdiv 5 Wdiv 5 Wdiv 1 MΩ 5 Wdiv 5 Wdiv 6 Wdiv 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	B _a		Add Add Add Add New Ref Bus RL	orizontal ms/div 20 ms R: 12.5 MS/s 80 ns/pt L: 250 kpts 9 16.4%	Trigger	Acquisition Auto, Analyze Sample: 12 bits 1 Acqs	e 05 /	teady Apr 2024

Figure 5. RT1985 Soft-Start Test Results

1.3 Start-Up Short-Circuit Protection (SCP)

During startup, the <u>RT1985</u>, <u>RT1986</u>, or <u>RT1987</u> monitors the output current. If an excessive inrush current or a hard short is detected, the device safely shuts down and retries after a defined delay, ensuring robust protection even under fault conditions.

Figure 7. The <u>RT1985/RT1986/RT1987</u> is used as a protection switch

File Edit Utility Help	Te	ektronix
Waveform View	Add	New
Startun-into-Short and Betry	C1: 387.940 µs 1/dt 2.58 kHz Da: 260.171 mA Add16: 670.65 A/s	Callout
Startup-Into-Short and Ketry	t: 28.066 µs a: 2.973 A t: 416.006 µs a: 3.233 A t: 416.006 µs a: 3.233 A	i Plot
	7.4	More
VIN: 5V/div	6A	
	· · · · · · · · · · · · · · · · · · ·	
<mark>₀ VOUT: 5V/div</mark>		
	24	
EN: 5V/div		
-12 ms -10 ms -8 ms -6 ms -4 ms	🚛 🕺 👔 Infinite Persisten	ce
Ch 1 Ch 2 Ch 3 Ch 4 1 A/div 5 V/div 5 V/div 5 V/div 1 MΩ Θ Θ Θ 20 MHz № 20 MHz № 20 MHz № 20 MHz №	Add New Math Add Ref Add 2 m/div Ref Horizontal 2 m/div Res Trigger 80 mA Acquisition Auto, SR: 12.5 M/Ss Auto, 80 m/pt RI: 25 M/Ss Analyze 332 Acqs	Stopped 05 Apr 2024 2:48:10 PM

Figure 8. <u>RT1985</u> Startup-into-Short and Retry Test Results

RICHTEK

1.4 Reverse Current Blocking

Some protection switches offer reverse current blocking to prevent current from flowing backward from the output to the input, which is especially important in redundant power source systems. The <u>RT1985</u>, <u>RT1986</u>, or <u>RT1987</u> offers Ideal Diode True Reverse Current Blocking (TRCB) capability, regulating the forward voltage drop and preventing reverse current flow from VOUT to VIN. This is essential in ORing applications where multiple power sources share a common load.

Figure 9. Reverse Blocking from the Output to the Input

Figure 10. <u>RT1985</u> Reverse Blocking Protection Test Results

1.5 Overvoltage Protection (OVP)

Some protection switches integrate overvoltage protection to safeguard downstream circuitry from input voltage spikes or abnormal conditions. The <u>RT1985</u>, <u>RT1986</u>, or <u>RT1987</u> includes OVP functionality that disconnects the load when the input voltage exceeds a defined threshold, preventing damage to sensitive components. This feature is particularly valuable in USB-C and power ORing systems, where unpredictable input sources may expose the system to voltage surges.

Figure 11. Overvoltage Protection from Excessive Input Voltage

File Edit Utility Help		Tektronix
Waveform View		Add New
C3 (A) t: -527.873 µs	Θ Δt: 527.840 μs −−−−− t: -32.926 ns 1/Δt: 1.89 kHz	Cursors Callout Measure Search
		Results Plot
VIN: 5V/div		BV
	OVP Threshold	20 V
VOUT: 5V/div		15V :
FLTB: 5V/div		sv
		0 V
		sv.
IOUT: 10A/div	-400 μs -200 μs 0 μs 660 μs 660 μs 800 μs	10 V
Ch 1 Ch 2 Ch 3 Ch 4 10 Adiv 5 V/div 5 V/div 5 V/div 1 MΩ Θ 20 MHz © 20 MHz © 20 MHz ©	Add New Add New Add New Horizontal 200 µs/dw 2 ms Trigger Acquisitior Sex New New New New New New New New Sample: 12 Sample: 12 O Acquisition Acquisition O Acquisition	Analyze bits 06 May 2024 1:27:05 PM

Figure 12. <u>RT1985</u> Overvoltage Protection Test Results

1.6 Over-Temperature Protection

Advanced protection switches integrate thermal protection mechanisms. If the device's junction temperature exceeds a critical threshold, it automatically turns off to prevent permanent damage. The <u>RT1985</u>, <u>RT1986</u>, or <u>RT1987</u> actively monitors the die temperature. If an excessive temperature (~140°C) is detected, the device disconnects the load and asserts a fault indication, enhancing system safety.

Figure 13. Over-Temperature Protection from Abnormal Thermal Conditions

File Edit Utility Help						Tektronix
Waveform View	E	Ū				Add New
		Ū.				sors Callout
VIN: 5V/div			Ambien	t lemp.=14	S C Mca	sure Search
					SON Tab	ults ple Plot
v001:5v/div						5: More
					288 197	
					2010	
					188	
C3					10.17	
EN: 5V/div						
					e V	
C						
FLTB: 5V/div					-50	
All ma				Elluco dibura	-0010	
Ch 1 Ch 2 Ch 3 Ch 4 5 V/div 5 V/div 5 V/div			dd Add Add Horizontal	Trigger	Acquisition Auto, Analyze	Ready
ペ ペ ペ ペ ペ ペ ペ ペ マ の ペ マ マ の マ	Hz ^B w	M	ew New Ref Bus SR: 2.5 MS/s RL: 250 kpts	100 ns/pt 46.4%	Sample: 12 bits 1 Acqs	10 May 2024 4:38:21 PM

Figure 14. <u>RT1985</u> Over-Temperature Protection Test Results

1.7 Low On-Resistance (20mΩ)

The <u>RT1985</u>, <u>RT1986</u>, or <u>RT1987</u> adopts advanced process technology to reduce the on-resistance (Ron) of the internal MOSFET to as low as $20m\Omega$, effectively minimizing power loss during high current transmission (P = I²R). This not only reduces device heating but also improves overall thermal efficiency.

1.8 Ultra-Low Quiescent Current

The <u>RT1985</u>, <u>RT1986</u>, or <u>RT1987</u> features an ultra-low quiescent current design, meaning that the IC itself consumes minimal power under no-load or light-load conditions. This further optimizes overall system power consumption and extends battery life, making it well-suited for portable devices such as laptops and tablets.

2 Application Examples

2.1 USB-C/Thunderbolt Power Delivery

Protection switches are critical in USB-C and Thunderbolt applications, where they control and protect power delivery to devices. They ensure safe connection and disconnection during dynamic power negotiation processes, managing inrush currents, and preventing backflow. <u>Figure 15</u> illustrates the <u>RT1985</u> used for sink and source control in a dual-port USB PD application.

Figure 15. <u>RT1985</u> for Sink and Source Control in a Dual-Port USB PD Application

Note 1. The above system diagram is for reference only. Actual products should be evaluated and adjusted based on your specific application requirements. For further assistance, please contact our regional office.

2.2 Docking Stations

In docking stations for laptops and tablets, protection switches are used to selectively enable or disable power to various ports and peripherals, helping optimize overall system efficiency, minimize standby power losses, and provide fault isolation.

2.3 Power ORing Applications

Protection switches with true reverse current blocking capability enable reliable power ORing. This allows seamless switching between multiple power sources (such as adapters, batteries, or auxiliary supplies) without backfeeding, ensuring system continuity and reliability.

3 Conclusion

Proper integration of protection switches enhances system reliability, reduces design complexity, and optimizes energy efficiency. As systems become increasingly complex, protection switches will continue to play a vital role in intelligent power distribution strategies. The <u>RT1985</u>, <u>RT1986</u>, or <u>RT1987</u> offers a highly integrated and robust solution for power path control, featuring Ideal Diode reverse current blocking, programmable soft-start, and advanced fault protection. Its compact design and versatile protection features make it ideal for demanding applications such as USB-C sink power delivery, docking stations, and power ORing systems. Leveraging the <u>RT1985</u>, <u>RT1986</u>, or <u>RT1987</u> simplifies power management design, increases system reliability, and enhances the end-user experience in next-generation electronic products.

To stay informed with more information about our products, please subscribe to our newsletter.

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: 886-3-5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by milication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.